Abstract

Regional soft tissue mechanical strain offers crucial insights into tissue's mechanical function and vital indicators for different related disorders. Tagging magnetic resonance imaging (tMRI) has been the standard method for assessing the mechanical characteristics of organs such as the heart, the liver, and the brain. However, constructing accurate artifact-free pixelwise strain maps at the native resolution of the tagged images has for decades been a challenging unsolved task. In this work, we developed an end-to-end deep-learning framework for pixel-to-pixel mapping of the two-dimensional Eulerian principal strains varvec{{varepsilon }}_{boldsymbol{p1}} and varvec{{varepsilon }}_{boldsymbol{p2}} directly from 1-1 spatial modulation of magnetization (SPAMM) tMRI at native image resolution using convolutional neural network (CNN). Four different deep learning conditional generative adversarial network (cGAN) approaches were examined. Validations were performed using Monte Carlo computational model simulations, and in-vivo datasets, and compared to the harmonic phase (HARP) method, a conventional and validated method for tMRI analysis, with six different filter settings. Principal strain maps of Monte Carlo tMRI simulations with various anatomical, functional, and imaging parameters demonstrate artifact-free solid agreements with the corresponding ground-truth maps. Correlations with the ground-truth strain maps were R = 0.90 and 0.92 for the best-proposed cGAN approach compared to R = 0.12 and 0.73 for the best HARP method for varvec{{varepsilon }}_{boldsymbol{p1}} and varvec{{varepsilon }}_{boldsymbol{p2}}, respectively. The proposed cGAN approach's error was substantially lower than the error in the best HARP method at all strain ranges. In-vivo results are presented for both healthy subjects and patients with cardiac conditions (Pulmonary Hypertension). Strain maps, obtained directly from their corresponding tagged MR images, depict for the first time anatomical, functional, and temporal details at pixelwise native high resolution with unprecedented clarity. This work demonstrates the feasibility of using the deep learning cGAN for direct myocardial and liver Eulerian strain mapping from tMRI at native image resolution with minimal artifacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.