Abstract
Abstract A quasi-analytical theoretical method is devised, and implemented in the Crystal program, for calculation of the direct “proper” piezoelectric tensor of periodic systems including both the clamped-nuclei electronic and nuclear relaxation contributions. It is based on using the analytical Coupled-Perturbed-Hartree–Fock/Kohn–Sham (CPHF/KS) procedure to obtain dipole derivatives with respect to lattice deformations as well as internal coordinates. The sole numerical step required involves building the Hessian matrix through differentiation of analytical energy gradients. Two prototypical piezoelectric, non-ferroelectric, crystals, namely ZnO and α-quartz, are used to demonstrate the accuracy and computational efficiency of our new scheme, which significantly improves upon the commonly used numerical Berry phase approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.