Abstract

Direct photolithographic deforming of hybrid glass films is used to fabricate optical structures. The structure is fabricated in polyethylene-oxide-acrylate modified hybrid glass films with (1) binary and gray-scale photomasks using a mercury UV-lamp exposure and (2) maskless UV-laser patterning. Fabrication of isolated lenslets, lens arrays, and gratings is presented, including the associated exposure patterns. The hybrid glass material yields light-induced deformation peak-to-valley (p.v.) heights up to 12.8 microm with mercury UV-lamp exposure and p.v. deformation heights up to 6.8 microm with 365-nm UV-laser exposure. The fabricated lenslets' surface data are presented as Zernike-polynomial fit coefficients. Material synthesis and processing-related aspects are examined to understand and control the material's deformation under exposure. The hybrid glass material exhibits a maximum spectral extinction coefficient of 1.6 x 10(-3) microm(-1) at wavelengths ranging from 450 to 2,200 nm and has a refractive index of 1.52 at 632.8 nm. The fabricated structures exhibit rms surface roughness between 1 and 5 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.