Abstract

Liquid-phase deposition of sol-gel method derived hybrid glass materials is utilized for fabrication of UV-light-sensitive thin films. The hybrid glass material undergoes a surface-relief deformation when exposed to UV light. The observed deformation phenomenon is in the form of a physical expansion of the exposed areas. The UV light induced surface expansion of the hybrid glass film was used to fabricate near-sinusoidal diffraction gratings with periods of 24 microm, 18 microm, 12 microm, and 9 microm. The maximum deformation when the material was patterned as a diffraction grating was 0.685 microm. The hybrid glass material features an index of refraction of 1.52 at 632.8 microm, rms surface roughness of 2.2 +/- 0.8 microm after processing, and extinction coefficients of 1.2 x 10-3 microm-1 and 0.47 x 10-3 mm-1 at wavelengths of 633 nm and 1550 nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.