Abstract

Annular bright field scanning transmission electron microscopy, which has recently been established to produce directly interpretable images with both light and heavier atomic columns visible simultaneously, is shown to allow directly interpretable imaging of the oxygen columns within the Σ 13 [ 1 2 ¯ 1 0 ] ( 1 0 1 ¯ 4 ) pyramidal twin grain boundary in α -Al 2 O 3 . By using information in the high-angle annular dark field image and annular bright field images simultaneously, we estimate the specimen thickness and finite source size, and use them to explore in simulation the issue of dark contrast in the vicinity of the grain boundary in the annular dark field image.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.