Abstract

We present a direct measurement of the displacement noise spectrum of a macroscopic silicon flexure at room temperature. A cantilever attached to the 100 μm thick flexure holds a mirror which forms part of an optical cavity to enhance the displacement sensitivity to thermal noise. We predict the displacement noise spectrum using a simple model that assumes the dominant source of frequency-dependent loss is thermo-elastic damping and find good agreement with the experimental data. The measurement is consistent with a frequency-independent loss of ϕ0,fi=1.6×10−5 combined with frequency-dependent thermo-elastic damping as the dominant losses. A crossover between the two that occurs well above the flexure resonant frequency allows a broadband measurement of the thermal noise of the silicon flexure. The flexure material, geometry, and measurement band are similar to those of planned future gravitational wave detectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.