Abstract

The 5d iridium-based transition metal oxides have gained broad interest because of their strong spin-orbit coupling, which favors new or exotic quantum electronic states. On the other hand, they rarely exhibit more mainstream orders like ferromagnetism due to generally weak electron-electron correlation strength. Here, a proximity-induced ferromagnetic (FM) state with TC ≈ 100 K and strong magnetocrystalline anisotropy is shown in a SrIrO3 (SIO) heterostructure via interfacial charge transfer by using a ferromagnetic insulator in contact with SIO. Electrical transport allows to selectively probe the FM state of the SIO layer and the direct observation of a strong, intrinsic, and positive anomalous Hall effect (AHE). For T≤ 20 K, the AHE displays unusually large coercive and saturation field, a fingerprint of a strong pseudospin-lattice coupling. A Hall angle, σxy AHE /σxx , larger by an order of magnitude than in typical 3d metals and an FM net moment of about 0.1 μB /Ir, is reported. This emphasizes how efficiently the nontrivial topological band properties of SIO can be manipulated by structural modifications and the exchange interaction with 3d TMOs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.