Abstract

We introduce a cluster extension of multipole moments to discuss the anomalous Hall effect (AHE) in both ferromagnetic (FM) and antiferromagnetic (AFM) states in a unified framework. We first derive general symmetry requirements for the AHE in the presence or absence of the spin-orbit coupling, by considering the symmetry of the Berry curvature in k space. The cluster multipole (CMP) moments are then defined to quantify the macroscopic magnetization in non-collinear AFM states, as a natural generalization of the magnetization in FM states. We identify the macroscopic CMP order which induces the AHE. The theoretical framework is applied to the non-collinear AFM states of Mn3Ir, for which an AHE was predicted in a first-principles calculation, and Mn3Z (Z=Sn, Ge), for which a large AHE was recently discovered experimentally. We further compare the AHE in Mn3Z and bcc Fe in terms of the CMP. We show that the AHE in Mn3Z is characterized with the magnetization of a cluster octupole moment in the same manner as that in bcc Fe characterized with the magnetization of the dipole moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.