Abstract

When strained beyond the linear regime, soft colloidal glasses yield to steady-state plastic flow in a way that is similar to the deformation of conventional amorphous solids. Because of the much larger size of the colloidal particles with respect to the atoms comprising an amorphous solid, colloidal glasses allow us to obtain microscopic insight into the nature of the yielding transition, as we illustrate here combining experiments, atomistic simulations, and mesoscopic modeling. Our results unanimously show growing clusters of nonaffine deformation percolating at yielding. In agreement with percolation theory, the spanning cluster is fractal with a fractal dimension d_{f}≃2, and the correlation length diverges upon approaching the critical yield strain. These results indicate that percolation of highly nonaffine particles is the hallmark of the yielding transition in disordered glassy systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.