Abstract

In this study, we investigated the diffusion dynamics at the interface between deuterated poly(methyl methacrylate) (d-PMMA) and protonated poly(methyl methacrylate) (h-PMMA) in two-layered thin films of d- and h-PMMA layers via neutron reflectivity (NR) measurements during isothermal annealing above the glass transition temperature Tg. When Tg of d-PMMA was higher than that of h-PMMA, the d-PMMA layer thickness increased with increasing annealing time ta and, simultaneously, the h-PMMA layer thickness decreased. However, the opposite ta dependence of the layer thicknesses was observed, if the Tg of d-PMMA was decreased by the increase in the fraction of the low-molecular weight d-PMMA: With increasing ta, the d-PMMA layer thickness decreased and the h-PMMA layer thickness increased when Tg of d-PMMA was lower than that of h-PMMA. This change in the ta dependence of the layer thickness was related to the change in the mobility of the d-PMMA layer accompanied by the change in the Tg value of d-PMMA. With the decrease in the d-PMMA layer thickness from 49 nm to 13 nm, when the h-PMMA layer thickness was maintained, the ta dependence of the layer thickness changed and the mobility of the d-PMMA layer dramatically increased. These results suggest that the mobility of thin polymer films can be determined by the observation of interfacial dynamics via NR measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.