Abstract

Commensurability effects play a crucial role in the formation of electronic properties of novel layered heterostructures. The interest in these moiré superstructures has increased tremendously since the recent observation of a superconducting state (Nature 2018, 556, 43-50) and metal-insulator transition (Nature 2018, 556, 80-84) in twisted bilayer graphene. In this regard, a straightforward and efficient experimental technique for detection of the alignment of layered materials is desired. In this work, we use optical second harmonic generation, which is sensitive to the inversion symmetry breaking, to investigate the alignment of graphene/hexagonal boron nitride heterostructures. To achieve that, we activate a commensurate-incommensurate phase transition by a thermal annealing of the sample. We find that this structural change in the system can be directly observed via a strong modification of a nonlinear optical signal. Unambiguous interpretation of obtained results reveals the potential of a second harmonic generation technique for probing of structural changes in layered systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call