Abstract

ABSTRACTChemical analysis of individual atom columns was carried out to determine the crystal structure and local point defect chemistry of Cu2ZnSnS4. Direct evidence for a nanoscale composition inhomogeneity, in the form of Zn enrichment and Cu depletion, was obtained. The lateral size of the composition inhomogeneity was estimated to be between ~1.5 and 5 nm. Photoluminescence confirmed the presence of a broad donor–acceptor transition consistent with the observed cation disorder. Areas of relatively high concentration of ZnCu+ antisite atom donors locally increases the electrostatic potential and gives rise to band bending. Troughs in the conduction band and peaks in the valence band are ‘potential wells’ for electrons and holes, respectively. For a solar cell, these prevent minority carrier electrons from diffusing towards the edge of the space charge region, thereby reducing the carrier separation efficiency as well as reducing the carrier collection efficiency of majority carrier holes. Furthermore, electrons and holes ‘trapped’ within potential wells in close proximity have a high probability of recombining, so that the carrier lifetime is also reduced. High quality Cu2ZnSnS4 crystals free from composition inhomogeneities are therefore required for achieving high efficiency solar cell devices. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.