Abstract

Dissociative electron attachment (DEA) is widely believed to play a high-profile role in ionizing radiation damages of bioorganic molecules, and its fundamentals are mainly learned from the gas-phase studies. However, the DEA process in aqueous solution is still in debate. Here we provide experimental evidence about the DEA processes of liquid methanol by using electron-impact-time-delayed mass spectrometry. In contrast to the gas- and solid-phase DEAs, methoxide ion CH3O- is the predominant product from the liquid interface. Furthermore, this anion can be produced with both the primary low-energy electrons and the inelastically scattered and secondary low-energy electrons. On the contrary, the primary low-energy electrons in the liquid bulk are more likely to be solvated, rather than directly participating in the DEA process. Our study provides new insights into radiation chemistry, particularly of bioorganic relevance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.