Abstract

Dissociative electron attachment (DEA) processes occur in many important applied contexts, particularly gas discharges, plasmas, biological systems, and astrophysical environments. In this review, we survey the basic physics of DEA and the progress that has been made during past 14 years since the last important review on DEA (Hotop et al., Adv. At. Mol. Opt. Phys. 49, 86). This progress includes studies of DEA to simple diatomic and polyatomic molecules with high energy resolution revealing vibrational Feshbach resonances and threshold structures, studies of angular distribution of the fragmentation products allowing analysis of the symmetries of the resonances involved, and theoretical developments in investigating the dynamics of nuclear motion in DEA processes. Particular attention is paid to recent advances in DEA to biological molecules as the process is important for understanding radiation damage. Recent progress in understanding electron attachment to van der Waals clusters and the influence of cluster environments on DEA is also reviewed. The review concludes with a forward look and suggestions for new research directions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call