Abstract

Abstract Inspired by the pectoral flippers of the humpback whale, the use of spanwise waviness in the leading edge has been considered in the literature as a possible way of improving the aerodynamic performance of wings. In this paper, we present an investigation based on direct numerical simulations of the flow around infinite wavy wings with a NACA0012 profile, at a Reynolds number R e = 1000 . The simulations were carried out using the Spectral/hp Element Method, with a coordinate system transformation employed to treat the waviness of the wing. Several combinations of wavelength and amplitude were considered, showing that for this value of Re the waviness leads to a reduction in the lift-to-drag ratio ( L / D ), associated with a suppression of the fluctuating lift coefficient. These changes are associated with a regime where the flow remains attached behind the peaks of the leading edge while there are distinct regions of flow separation behind the troughs, and a physical mechanism explaining this behaviour is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.