Abstract

We are currently developing a novel gas embolotherapy technique that involves the selective, acoustic vaporization of liquid perfluorocarbon droplets in or near a tumor as a possible treatment for cancer The resulting bubbles can then stick within the tumor vasculature to occlude blood flow and "starve" the tumor The potential development of high stresses during droplet vaporization is a major concern for safe implementation of this technique. No prior study, either experimentally or theoretically, addresses this important issue. In this work, the acoustic vaporization procedure of the therapy is investigated by direct numerical simulations. The nonlinear, multiphase, computational model is comprised of an ideal gas bubble surrounded by liquid inside a long tube. Convective and unsteady inertia, viscosity, and surface tension affect the bubble dynamics and are included in this model, which is solved by a novel fixed-grid, sharp-interface, moving boundary method. We assess the potential for flow-induced wall stresses to rupture the vessel or damage the endothelium during vaporization under a range of operating conditions by varying dimensionless parameters--Reynolds, Weber, and Strouhal numbers, inertial energy and initial droplet size. It is found that the wall pressure is typically highest at the start of the bubble expansion, but the maximum wall shear stress occurs at a later time. Smaller initial bubble diameters, relative to the vessel diameter, result in lower wall stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call