Abstract

We have utilized a computational model of the expansion of a microbubble in a liquid-filled flexible tube to investigate the potential for acoustic vaporization of perfluorocarbon droplets to damage blood vessels during a novel gas embolotherapy technique for the potential treatment of tumors. This model uses a fixed grid, multi-domain, interface tracking, direct numerical simulation method that treats all interfaces and boundaries as sharp discontinuities for high accuracy. In the current work, we examined effects of initial bubble size on the flows and wall stresses that result from droplet vaporization. The remaining dimensionless parameters that govern the system response (Reynolds, Weber, and Strouhal numbers, initial bubble pressure, and wall stiffness and tension) were selected to model an arteriole. The results for a flexible tube are significantly different from those for a rigid tube. Two major flow regimes occur due to the combined effect of bubble and tube deformation: in flow at the tube ends and out flow near the bubble surface. The flexibility of the tube largely dissipates the extreme pressure that develops in the rigid tube model. Both the magnitude and the overall expansion time of the rapidly changing pressure are greatly reduced in the flexible tube. Smaller initial bubble diameters, relative to the vessel diameter, result in lower wall stresses. This study indicates that wall flexibility can significantly influence the wall stresses that result from acoustic vaporization of intravascular perfluorocarbon droplets, and suggests that acoustic activation of droplets in larger, more flexible vessels may be less likely to damage or rupture vessels than activation in smaller and stiffer vessels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.