Abstract

AbstractThe torque in turbulent Taylor–Couette flows for shear Reynolds numbers $R{e}_{S} $ up to $3\times 1{0}^{4} $ at various mean rotations is studied by means of direct numerical simulations for a radius ratio of $\eta = 0. 71$. Convergence of simulations is tested using three criteria of which the agreement of dissipation values estimated from the torque and from the volume dissipation rate turns out to be most demanding. We evaluate the influence of Taylor vortex heights on the torque for a stationary outer cylinder and select a value of the aspect ratio of $\Gamma = 2$, close to the torque maximum. The local transport resulting in the torque is investigated via the transverse current ${J}^{\omega } $ which measures the transport of angular momentum and can be computed from the velocity field. The typical spatial distribution of the individual convective and viscous contributions to the local torque is analysed for a turbulent flow case. To characterize the turbulent statistics of the transport, probability density functions (p.d.f.s) of local current fluctuations are compared with experimental wall shear stress measurements. P.d.f.s of instantaneous torques reveal a fluctuation enhancement in the outer region for strong counter-rotation. Moreover, we find for simulations realizing the same shear $R{e}_{S} \geq 2\times 1{0}^{4} $ the formation of a torque maximum for moderate counter-rotation with angular velocities ${\omega }_{o} \approx - 0. 4\hspace{0.167em} {\omega }_{i} $. In contrast, for $R{e}_{S} \leq 4\times 1{0}^{3} $ the torque features a maximum for a stationary outer cylinder. In addition, the effective torque scaling exponent is shown to also depend on the mean rotation state. Finally, we evaluate a close connection between boundary-layer thicknesses and the torque.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.