Abstract
Direct numerical simulation of stably and unstably stratified turbulent open channel flow is performed. The three-dimensional Navier-Stokes and energy equations under the Boussinesq approximation are numerically solved using a fractional-step method based on high-order accurate spatial schemes. The objective of this study is to reveal the effects of thermally stable and unstable stratification on the characteristics of turbulent flow and heat transfer and on turbulence structures near the free surface of open channel flow. Here, fully developed weakly stratified turbulent open channel flows are calculated for the Richardson number ranging from 20 (stably stratified flow) to 0 (unstratified flow) and to −10 (unstably stratified flow), the Reynolds number 180 based on the wall friction velocity and the channel depth, and the Prandtl number 1. To elucidate the turbulent flow and heat transfer behaviors, typical quantities including the mean velocity, temperature and their fluctuations, turbulent heat fluxes, and the structures of velocity and temperature fluctuations are analyzed.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have