Abstract
AbstractWe study the transition of a Mach 6 laminar boundary layer due to an isolated cylindrical roughness element using large-scale direct numerical simulations (DNS). Three flow conditions, corresponding to experiments conducted at the Purdue Mach 6 quiet wind tunnel are simulated. Solutions are obtained using a high-order, low-dissipation scheme for the convection terms in the Navier–Stokes equations. The lowest Reynolds number ($Re$) case is steady, whereas the two higher $Re$ cases break down to a quasi-turbulent state. Statistics from the highest $Re$ case show the presence of a wedge of fully developed turbulent flow towards the end of the domain. The simulations do not employ forcing of any kind, apart from the roughness element itself, and the results suggest a self-sustaining mechanism that causes the flow to transition at a sufficiently large Reynolds number. Statistics, including spectra, are compared with available experimental data. Visualizations of the flow explore the dominant and dynamically significant flow structures: the upstream shock system, the horseshoe vortices formed in the upstream separated boundary layer and the shear layer that separates from the top and sides of the cylindrical roughness element. Streamwise and spanwise planes of data were used to perform a dynamic mode decomposition (DMD) (Rowley et al., J. Fluid Mech., vol. 641, 2009, pp. 115–127; Schmid, J. Fluid Mech., vol. 656, 2010, pp. 5–28).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.