Abstract

Blood is composed of a suspension of red blood cells (RBCs) suspended in plasma, and the presence of the RBCs substantially changes the flow characteristics and rheology of these suspensions. The viscosity of blood varies with the hematocrit (volume fraction of RBCs), which is a result not seen in Newtonian fluids. Additionally, RBCs are deformable, which can alter suspension dynamics. Understanding the physics in these flows requires accurately simulating the suspended phase to recover the microscale, and a subsequent analysis of the rheology to ascertain the continuum-level effects caused by the changes at the particle level. The direct numerical simulation of blood flow including RBC migration effects has the capability to resolve the Fåhraeus effect of observing low hematocrit values near walls, the subsequent cell-depleted layer, and the presence of velocity profile blunting due to the distribution of RBCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.