Abstract

Purpose – This study is concerned with the direct numerical simulation (DNS) of a turbulent channel flow by an improved vortex in cell (VIC) method. The paper aims to discuss these issues. Design/methodology/approach – First, two improvements for VIC method are proposed to heighten the numerical accuracy and efficiency. A discretization method employing a staggered grid is presented to ensure the consistency among the discretized equations as well as to prevent the numerical oscillation of the solution. A correction method for vorticity is also proposed to compute the vorticity field satisfying the solenoidal condition. Second, the DNS for a turbulent channel flow is conducted by the improved VIC method. The Reynolds number based on the friction velocity and the channel half width is 180. Findings – It is highlighted that the simulated turbulence statistics, such as the mean velocity, the Reynolds shear stress and the budget of the mean enstrophy, agree well with the existing DNS results. It is also shown that the organized flow structures in the near-wall region, such as the streaks and the streamwise vortices, are favourably captured. These demonstrate the high applicability of the improved VIC method to the DNS for wall turbulent flows. Originality/value – This study enables the VIC method to perform the DNS for wall turbulent flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.