Abstract
Abstract The tilt angle of photovoltaic (PV) panels is a crucial determinant of their performance and can be adjusted using different tracking methods. Periodically changing the tilt angle strikes a practical balance between efficiency and cost. This work introduces a bi-directional long short-term memory (Bi-LSTM)-based direct normal irradiance (DNI) prediction to estimate the time intervals for the tilt angle adjustments. DNI prediction involves 22-year (2000–2022) historical time series data and the Bi-LSTM deep learning model to predict DNI at different time frames for the location Madurai, India. Using the predicted DNI, tilt angle-based DNI is mapped using the tilt angle correlation through a nearest neighborhood interpolation method. DNI potential over a specific period is utilized to find the optimum time intervals for the tilt angle adjustments. The simulation study of this work is implemented with a 5 kW grid-connected solar PV system using pvsyst software. The effectiveness of the proposed methodology is evaluated based on the improvements in power output, levelized cost of energy (LCOE), and carbon emission reductions and compared with other existing methods. The results showed that using the proposed optimal tilt angle intervals led to a 10.31% increase in PV output power, the lowest LCOE at 3.61 c/kW h, and 8.363 tCO2/year carbon emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.