Abstract
Cell patterning is an important tool for organizing cells in surfaces and to reproduce in a simple way the tissue hierarchy and complexity of pluri-cellular life. The control of cell growth, proliferation and differentiation on solid surfaces is consequently important for prosthetics, biosensors, cell-based arrays, stem cell therapy and cell-based drug discovery concepts. We present a new electron beam lithography method for the direct and simultaneous fabrication of sub-micron topographical and chemical patterns, on a biocompatible and biodegradable PAA hydrogel. The localized e-beam modification of a hydrogel surface makes the pattern able to adsorb proteins in contrast with the anti-fouling surface. By also exploiting the selective attachment, growth and differentiation of PC12 cells, we fabricated a neural network of single cells connected by neuritis extending along microchannels. E-beam microlithography on PAA hydrogels opens up the opportunity of producing multifunctional microdevices incorporating complex topographies, allowing precise control of the growth and organization of individual cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.