Abstract

In the present research, direct metal laser sintering (DMLS) method was chosen to fabricate titanium nitride (TiN) reinforced Ti6Al4V alloy based metal matrix composites (MMCs) under an argon atmosphere using continuous wave (CW) fiber laser having a capacity of 400 W. Laser sintering process parameters, such as layer thickness (0.4 mm), laser beam spot diameter (0.4 mm), and hatching gap (0.2 mm) were kept constant throughout the experiments. Effects of input variable process parameters, such as laser power (50–65 W), scanning speed (3500–4500 mm/min), and volume % of TiN (5–15% v/v) on density, microhardness, and coefficient of friction of the fabricated MMCs were analyzed. The obtained results show the improvement in the physical properties of the fabricated MMCs and FESEM images evidently confirm the presence of TiN particulates and also revealed the uniform distribution of the TiN reinforcement in Ti6Al4V matrix. It was found that the microhardness measured by Vickers test was improved from 388 to 590 HV0.2 with an increase in the volume percentage of TiN. The results showed the coefficient of friction for fabricated samples were in the range of 0.33–0.42. The density (3.40–4.10 g/cm3) of the MMCs was found to increase with increasing the volume percentage of TiN reinforcement in the powder mixture. X-ray diffraction (XRD) analysis of the fabricated MMC confirmed the presence of different in-situ phases, such as Ti, TiN, TiO2, VN, AlV, Ti3Al2N2, and V6N2.7 as a consequence of a series of a chemical reaction between TiN and different elements of Ti6Al4V in the argon atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.