Abstract

ABSTRACTIn this work, a systematic study and optimization on direct metal laser sintering (DMLS) of a cBN reinforced Ti6Al4V metal matrix composite (MMC) has been carried out using the response surface methodology (RSM). Variable process parameters such as volume % of cBN (5–15%), laser power (50–60 W), scanning speed (3500–4500 mm/min), and constant parameters such as laser spot diameter (0.2 mm), hatching gap (0.2 mm), and layer thickness (0.4) were considered for the experiments. The RSM was employed to establish a regression equation to predict different output parameters of the sintered samples such as the wear rate, relative density, and microhardness. Based on the developed model, the influence of process parameters on the wear rate, density, and microhardness were accomplished with optimized results. Hence, the result, thus, obtained showed the maximum hardness and density of 519 HV0.2 and 4.23 g/cm3, respectively, and the minimum wear of 26.49 µm in a testing time duration of 10 minutes. X-Ray Diffraction (XRD) analysis of the fabricated MMC confirms the presence of different phases such as cBN, AlN, TiN, TiB2, and TiO2 as a consequence of a series of chemical reactions among cBN and different elements of Ti6Al4V in an argon atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.