Abstract

Early forms of high-density lipoproteins (HDL), nascent HDL, are formed by the interaction of apolipoprotein AI with macrophage and hepatic ATP-binding cassette transporter member 1. Various plasma activities convert nascent to mature HDL, comprising phosphatidylcholine (PC) and cholesterol, which are selectively removed by hepatic receptors. This process is important in reducing the cholesterol burden of arterial wall macrophages, an important cell type in all stages of atherosclerosis. Interaction of apolipoprotein AI with dimyristoyl (DM)PC forms reconstituted (r)HDL, which is a good model of nascent HDL. rHDL have been used as an antiathersclerosis therapy that enhances reverse cholesterol transport in humans and animal models. Thus, identification of the structure of rHDL would inform about that of nascent HDL and how rHDL improves reverse cholesterol transport in an atheroprotective way. Early studies of rHDL suggested a discoidal structure, which included pairs of antiparallel helices of apolipoprotein AI circumscribing a phospholipid bilayer. Another rHDL model based on small angle neutron scattering supported a double superhelical structure. Herein, we report a cryo-electron microscopy-based model of a large rHDL formed spontaneously from apolipoprotein AI, cholesterol, and excess DMPC and isolated to near homogeneity. After reconstruction we obtained an rHDL structure comprising DMPC, cholesterol, and apolipoprotein AI (423:74:1 mol/mol) forming a discoidal particle 360 Å in diameter and 45 Å thick; these dimensions are consistent with the stoichiometry of the particles. Given that cryo-electron microscopy directly observes projections of individual rHDL particles in different orientations, we can unambiguously state that rHDL particles are protein bounded discoidal bilayers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.