Abstract

The poloidal long-wavelength E x B time-varying flows were directly measured using a forked Langmuir probe in the HT-7 tokamak. Low-frequency (<10 kHz) E x B flows were observed at the plasma edge, which possess many of the characteristics of zonal flows, including a poloidal long-wavelength (k(theta)rho(i) approximately 0) and narrow radial extent (k(r)rho(i) approximately 0.1). The cross bicoherence of turbulent Reynolds stress indicates the existence of nonlinear three-wave coupling processes and the generation of low-frequency E x B flows. The estimated flow-shearing rate is of the same order of magnitude as the turbulence decorrelation rate and may thus regulate the fluctuation level and thereby the turbulence-driven transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.