Abstract

Excited-state populations of CF 3I after IR multiphoton excitation were monitored by time-resolved hot-band UV absorption spectroscopy. Using a calibration of the spectrum by shock-wave experiments, the absorption changes during the laser pulse are analyzed with respect to excited-state populations and dissociation at higher excitation energies. Dissociation of molecules near threshold is detected under collision-free conditions by absorption changes after the laser pulse. At higher pressures, absorption signals after the pulse are markedly influenced by energy transfer between excited and cold molecules. The measured dissociation rate constants near threshold are consistent with statistical calculations of k(E,J), showing pronounced rotational dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.