Abstract

Multiple analytical techniques to measure microplastics (MPs) in complex environmental matrices are currently under development, and which is most suited often depends on the aim(s) of the research question and the experimental design. Here, we further broaden the suite of possible techniques which can directly detect MPs in suspension while differentiating the carbon contained in MPs from other natural particles and dissolved organic carbon (DOC). Single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) is well suited to measuring particles at trace concentrations, and the use of ICP time-of-flight-MS (ICP-TOFMS) allows one to simultaneously monitor the entire elemental spectrum to assess the full elemental composition of individual particles through developing elemental fingerprints. Because carbon is not detected in a standard operation mode with icp TOF, a dedicated optimization was necessary. Subsequently, to assess the feasibility of monitoring 12C particle pulses for the detection of MPs in more complex natural waters, two proof-of-principle studies were performed to measure MPs in waters with environmentally relevant DOC backgrounds (≤20 mg/L) and in the presence of other carbon containing particles, here, algae. Elevated DOC concentrations did not impact the enumeration of particles in suspension, and individual MPs, single algae, and aggregates of MPs and algae were clearly distinguished. The simultaneous identification of different analytes of interest allows for multiplexed sp-ICP-TOFMS experiments utilizing elemental fingerprinting of particles and is a step forward in quantifying MPs in aqueous environmental samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.