Abstract

We have directly measured nanoscale electronic features associated with a 120 nm physical gate length p-channel silicon metal–oxide–semiconductor field-effect transistor device structure including n+ superhalo implants using cross-sectional scanning capacitance microscopy (SCM). A dc bias-dependent voltage series of SCM images representing nine bias conditions from 2 to −2 V in 0.5 V steps was obtained. The SCM contrast observed varies with the ac and dc bias applied to the sample and allows delineation of the device features, including the p+ source and drain contacts, p+ source and drain extensions, p+ polycrystalline silicon gate, electrical p–n junction, n-well, and n+ superhalo implants. It is demonstrated that the superhalo implant features are imaged only under specific SCM bias conditions. Detailed analysis of the resulting SCM contrast indicates an apparent channel length of 73±11 nm, and reveals clear asymmetry in the individual lobes of the n+ superhalo implant features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.