Abstract

A carbon-fiber–reinforced thermoplastic (polyamide 6 with 20wt.% carbon fiber addition) and an aluminum alloy (A5052) were joined using friction lap joining. The joint characteristics were evaluated to investigate the effects of A5052 surface treatments and the joining speed on the joint properties. Carbon-fiber–reinforced thermoplastic and A5052 were joined via an interfacial magnesium oxide layer. Surface grinding of the A5052 generated the aluminum hydroxide on the alloy surface and increased the tensile shear strength of the joint. The tensile shear strength increased as the joining speed increased from 100 to 1600mmmin−1, and decreased thereafter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.