Abstract
Oxygen-free copper (Cu) was successfully joined to carbon-fiber-reinforced thermoplastic (CFRTP, polyamide 6 with 20wt% carbon fiber addition) by friction lap joining (FLJ) at joining speeds of 200–1600mm/min with a constant rotation rate of 1500rpm and a nominal plunge depth of 0.9mm. It is the first time to report the joining of CFRTP to Cu by FLJ. As the joining speed increased, the tensile shear force (TSF) of joints increased first, and decreased thereafter. The maximum TSF could reach 2.3kN (15mm in width). Hydrogen bonding formed between the amide group of CFRTP and the thin Cu2O layer on the Cu surface, which mainly contributed to the joint bonding. The influence factors of the TSF of the joints at different joining speeds were discussed. The TSF was mainly affected by the joining area, the degradation of the plastic matrix and the number and the size of bubbles. As the joining speed increased, the influence factors varied as follows: the joining area increased first and then decreased; the degradation of the plastic matrix and the number and the size of bubbles decreased. The maximum TSF was the comprehensive result of the relatively large joining area, small degradation of the plastic matrix and small number and sizes of bubbles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.