Abstract

Minocycline, a repurposed approved medication, shows promise in treating neurodegeneration. However, the specific pathways targeted by minocycline remain unclear despite the identification of molecular targets. This study explores minocycline's potential protective effects against TNF-α-mediated neuronal death in PC12 cells, with a focus on unraveling its interactions with key molecular targets. The study begins by exploring minocycline's protective role against TNF-α-mediated neuronal death in PC12 cells, showcasing a substantial reduction in cleaved caspase-3 expression, DNA fragmentation, and intracellular ROS levels following minocycline pretreatment. Subsequently, a comprehensive analysis utilizing pull-down assays, computational docking, mutation analysis, molecular dynamics simulations, and free energy calculations is conducted to elucidate the direct interaction between minocycline and p47phox-the organizer subunit of NADPH oxidase-2 (NOX2) complex. Computational insights, including a literature survey and analysis of key amino acid residues, reveal a potential binding site for minocycline around Trp193 and Cys196. In silico substitutions of Trp193 and Cys196 further confirm their importance in binding with minocycline. These integrated findings underscore minocycline's protective mechanisms, linking its direct interaction with p47phox to the modulation of NOX2 activity and attenuation of NOX-derived ROS generation. Minocycline demonstrates protective effects against TNF-α-induced PC12 cell death, potentially linked to its direct interaction with p47phox. This interaction leads to a reduction in NOX2 complex assembly, ultimately attenuating NOX-derived ROS generation. These findings hold significance for researchers exploring neuroprotection and the development of p47phox inhibitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.