Abstract
The direct ink writing of an ink composed of a preceramic polymer and fillers was used to produce hardystonite (Ca2ZnSi2O7) bioceramic scaffolds. Suitable formulations were developed for the extrusion of fine filaments (350 μm diameter) through a nozzle. The preceramic polymer was employed with the double purpose of contributing to the rheology of the ink by increasing its viscosity and of forming the hardystonite phase upon heat treatment by reacting with the fillers. A control of the rheology is essential when spanning features have to be produced, and therefore the main rheological characteristics of the inks were measured (flow curves, dynamic oscillation tests, viscosity recovery tests) and compared to models reported in the literature. Highly porous scaffolds (up to 80% total porosity) were produced and heat treated in air or in nitrogen atmosphere. The influence of the heat‐treatment atmosphere on the morphology, crystalline phase assemblage, and compressive strength of the scaffolds was investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.