Abstract
The main targets of our investigation were cytochrome P450 isozymes (P450), the key enzymes of the hepatic drug-metabolizing system. Current research approaches to the identification of individual P450 forms include specific P450 inhibitors or substrates, antibody-based identification, and mRNA-based expression profiling. All of these approaches suffer from one common disadvantage-they all are indirect methods. On the other hand, current developments in mass spectrometry provide a direct and reliable approach to protein identification with sensitivity in the femtomole or low picomole range. In this study we have used high-accuracy, matrix-assisted laser desorption/ionization time of flight (MALDI TOF)-based peptide mapping to perform direct identification of distinct P450 isozymes in various rat and rabbit liver microsomes. For the first time, the P450 isozyme composition of clofibrate-induced rat and phenobarbital-induced rabbit liver microsomes was determined by peptide mass fingerprinting (PMF). Application of MALDI TOF-based PMF allows differential identification of such highly homologous P450s as CYP2B1 and CYP2B2. We have found that CYP2A10 previously reported only in rabbit olfactory and respiratory nasal mucosa is present in phenobarbital (PB)-induced rabbit liver microsomes. Two other rabbit P450s, earlier identified only by screening a cDNA library, were found to be present in PB-induced rabbit liver microsomes. In summary, direct identification of P450s by proteomic technique offers advantages over other methods with regard to identification of distinct P450 isozymes and should become a standard approach for characterizing microsomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.