Abstract

The capacity of human, rabbit and rat liver microsomes and purified isozymes of cytochrome P450 to metabolize theophylline has been assessed. In all three species the 8-hydroxylation of theophylline to 1,3-dimethyluric acid (1,3-DMU) was the major pathway. In human, control rabbit and rat liver microsomes this metabolite accounted for 59, 77 and 94%, respectively, of the total metabolites formed. In both human and control rabbit liver microsomes the N-demethylation of theophylline to 1-methylxanthine (1-MX) accounted for 20% of the total metabolites formed. N-demethylation of theophylline to 3-methylxanthine (3-MX) accounted for 21% of theophylline metabolism in human microsomes but was a minor pathway in control rabbit and rat microsomes. Acetone and phenobarbitone pretreatment markedly increased the formation of 1,3-DMU by rabbit liver microsomes. Rifampicin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) administration caused a slight but significant increase in this pathway. In general the N-demethylation pathways in rabbit liver microsomes were refractory to induction. In the rat, the metabolism of theophylline to 1-MX, 3-MX and 1,3-DMU were all significantly increased in Aroclor 1254, dexamethasone, phenobarbitone and 3-methylcholanthrene-treated microsomes. In reconstitution experiments the polycyclic hydrocarbon inducible rabbit cytochrome P450 Forms 4 and 6 and the constitutive Form 3b all metabolized theophylline to its three metabolites. In human liver microsomes from four subjects anti-rabbit cytochrome P450 Form 4 IgG inhibited the metabolism of theophylline to 1-MX, 3-MX and 1,3-DMU by approximately 30%. These data indicate that theophylline is metabolized by multiple forms of cytochrome P450 in human, rabbit and rat liver microsomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call