Abstract

Direct mass measurements in the region of the heaviest elements were performed with the Penning-trap mass spectrometer SHIPTRAP at GSI Darmstadt. Utilizing the phase-imaging ion-cyclotron-resonance mass-spectrometry technique, the atomic masses of No251 (Z=102), Lr254 (Z=103), and Rf257 (Z=104) available at rates down to one detected ion per day were determined directly for the first time. The ground-state masses of No254 and Lr255,256 were improved by more than one order of magnitude. Relative statistical uncertainties as low as δm/m≈10−9 were achieved. Mass resolving powers of 11 000 000 allowed resolving long-lived low-lying isomeric states from their respective ground states in No251,254 and Lr254,255. This provided an unambiguous determination of the binding energies for odd-A and odd-odd nuclides previously determined only indirectly from decay spectroscopy.Received 24 June 2022Accepted 28 September 2022DOI:https://doi.org/10.1103/PhysRevC.106.054325Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasBinding energy & massesNuclear structure & decaysPropertiesA ≥ 220TechniquesMass spectrometryPenning trapsRadioactive beamsNuclear Physics

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call