Abstract
Finding the fastest path to a desired destination is a vitally important task for microorganisms moving in a fluid flow. We study this problem by building an analytical formalism for overdamped microswimmers on curved manifolds and arbitrary flows. We show that the solution corresponds to the geodesics of a Randers metric, which is an asymmetric Finsler metric that reflects the irreversible character of the problem. Using the examples of spherical and toroidal surfaces, we demonstrate that the swimmer performance that follows this “Randers policy” always beats a more direct policy. Moreover, our results show that the relative gain grows significantly when specific structures related to either the geometry or the flow are exploited by the swimmer. A study of the shape of isochrones reveals features such as self-intersections, cusps, and abrupt nonlinear effects. Our work provides a link between microswimmer physics and geodesics in generalizations of general relativity.Received 15 October 2020Revised 2 February 2021Accepted 29 April 2021DOI:https://doi.org/10.1103/PhysRevResearch.3.023125Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasSwimmingPhysical SystemsActive matterMicroswimmersTechniquesGeometryBiological Physics
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.