Abstract

Direct heteroepitaxy and selective area growth (SAG) of GaP and GaAs on Si(100) and Si(111) are implemented by low‐pressure hydride vapor phase epitaxy (LP‐HVPE), which are facilitated by buffer layers grown at 410–490 °C with reactive gas mixing directly above Si substrates. High‐density islands observed on GaP buffer layers on Si result in rough morphology and defect formation in the subsequent GaP layers grown at 715 °C. The impact of growth temperature of GaAs buffer layers on the crystal quality of GaAs/Si is studied. A decreased nucleation temperature significantly improves the morphology and crystalline quality of the overall GaAs growth on Si. It is observed that Si(111) substrates are favorable for both GaP and GaAs growths in comparison with Si(100). In SAGs of GaP/Si and GaAs/Si, the high selectivity innate to HVPE is maintained in the used unconventional growth regime. The spatially resolved photoluminescence mapping reveals the material quality of GaAs/Si is enhanced by defect filtering by SAG. The outcomes of this work will pave the way of III–V/Si integration realized by cost‐effective HVPE for photonic device applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.