Abstract
Hydrogen cyanide (HCN) is synthesized from ammonia (NH3) and methane (CH4) at ~1200°C over a Pt catalyst. Ammonia synthesis entails several complex, highly emitting processes. Plasma-assisted HCN synthesis directly from CH4 and nitrogen (N2) could be pivotal for on-demand HCN production. Here, we evaluate the potential of dielectric barrier discharge (DBD) N2/CH4 plasma for decentralized catalyst-free selective HCN production. We demonstrate a single-step conversion of methane and nitrogen to HCN with a 72% yield at <300°C. HCN is favored at low CH4 concentrations with ethane (C2H6) as the secondary product. We propose a first-principles microkinetic model with few electron impact reactions. The model accurately predicts primary product yields and elucidates that methyl radical (·CH3) is a common intermediate in HCN and C2H6 synthesis. Compared to current industrial processes, N2/CH4 DBD plasma can achieve minimal CO2 emissions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.