Abstract

Covalent organic frameworks (COFs) are emerging as promising sensing materials due to their controllable structure and function properties, as well as excellent physicochemical characteristics. Here, specific interactions between a triazine-based COF and a mass-used herbicide – glyphosate (GLY) have been utilized to design a disposable sensing platform for GLY detection. This herbicide has been extensively used for decades, however, its harmful environmental impact and toxicity to humans have been recently proven, conditioning the necessity for the strict control and monitoring of its use and its presence in soil, water, and food. Glyphosate is an organophosphorus compound, and its detection in complex matrices usually requires laborious pretreatment. Here, we developed a direct, miniaturized, robust, and green approach for disposable electrochemical sensing of glyphosate, utilizing COF's ability to selectively capture and concentrate negatively charged glyphosate molecules inside its nanopores. This process generates the concentration gradient of GLY, accelerating its diffusion towards the electrode surface. Simultaneously, specific COF-glyphosate binding catalyses the oxidative cleavage of the C–P bond and, together with pore nanoconfinement, enables sensitive glyphosate detection. Detailed sensing principles and selectiveness were scrutinized using DFT-based modelling. The proposed electrochemical method has a linear working range from 0.1 μM to 10 μM, a low limit of detection of 96 nM, and a limit of quantification of 320 nM. The elaborated sensing approach is viable for use in real sample matrices and tested for GLY determination in soil and water samples, without pretreatment, preparation, or purification. The results showed the practical usefulness of the sensor in the real sample analysis and suggested its suitability for possible out-of-laboratory sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.