Abstract
Specific recognition and selective extraction of mycotoxin in environmental and food matrixes is significant to guarantee public health. Covalent organic frameworks (COFs) are promising adsorbents with tailorable functionality, but their low binding affinity and poor selectivity hamper their wide application for selective extraction of trace mycotoxin from complex matrix. Herein, we report calixarene incorporated molecular imprinting on COF to prepare molecularly imprinted calix[4]arene-containing COF (MICOF-CX4) for supramolecular recognition and specific adsorption of citrinin. Calixarene with host-guest chemistry was used as a functional monomer, while amine units with different topologies and function groups were selected to regulate MICOF-CX4 to match with citrinin. The complementary shape and supramolecular interactions of MICOF-CX4 gave highly selective recognition for citrinin. Moreover, MICOF-CX4 with vast accessible surface and plentiful imprinting sites exhibited faster adsorption kinetics and 4-fold higher adsorption capacity for citrinin adsorption than no-imprinted COF-CX4. Combination of MICOF-CX4 based solid-phase extraction with high-performance liquid chromatography-mass spectrometry allowed interference free determination of trace citrinin in real samples with a low detection limit of 0.03 ng mL−1, good precision of 4.5 % and quantitative recovery of 88.2 %−101.4 %. The cooperative functions of calixarene and molecular imprinting make COF promising adsorbent for specific adsorption of trace targets in complex matrixes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have