Abstract

Abstract. This paper presents results from a Direct Mapping Solution (DMS) comprised of an Applanix APX-15 UAV GNSS-Inertial system integrated with a Sony a7R camera to produce highly accurate ortho-rectified imagery without Ground Control Points on a Microdrones md4-1000 platform. A 55 millimeter Nikkor f/1.8 lens was mounted on the Sony a7R and the camera was then focused and calibrated terrestrially using the Applanix camera calibration facility, and then integrated with the APX-15 UAV GNSS-Inertial system using a custom mount specifically designed for UAV applications. In July 2015, Applanix and Avyon carried out a test flight of this system. The goal of the test flight was to assess the performance of DMS APX-15 UAV direct georeferencing system on the md4-1000. The area mapped during the test was a 250 x 300 meter block in a rural setting in Ontario, Canada. Several ground control points are distributed within the test area. The test included 8 North-South lines and 1 cross strip flown at 80 meters AGL, resulting in a ~1 centimeter Ground Sample Distance (GSD). Map products were generated from the test flight using Direct Georeferencing, and then compared for accuracy against the known positions of ground control points in the test area. The GNSS-Inertial data collected by the APX-15 UAV was post-processed in Single Base mode, using a base station located in the project area via POSPac UAV. The base-station’s position was precisely determined by processing a 12-hour session using the CSRS-PPP Post Processing service. The ground control points were surveyed in using differential GNSS post-processing techniques with respect to the base-station.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.