Abstract

We present the first, to the best of our knowledge, direct generation of pulsed optical vortices in the 2.7-µ m spectral range by employing polycrystalline Fe:ZnSe as a saturable absorber (SA). A modified theoretical model taking into account the propagation features of the reshaped annular pump beam is elaborated to accurately determine the excitation conditions of the Laguerre–Gaussian (LG0,l) modes, yielding a lasing efficiency comparable to the fundamental TEM00 mode in continuous-wave (CW) regime. Nanosecond scalar optical vortices with well-defined handedness are successfully produced by taking advantages of designated mode-matching, high polarization extinction ratio (PER), and the "spatial filter" effect of the SA on other transverse modes. Such scalar vortex laser pulses in the mid-infrared region will enable new applications such as frequency down conversion to produce optical vortices at longer (far-infrared) wavelengths, structuring organic materials, novel molecular spectroscopy, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call