Abstract

Grain boundaries (GBs) in polycrystalline graphene scatter charge carriers, which reduces carrier mobility and limits graphene applications in high-speed electronics. Here we report the extraction of the resistivity of GBs and the effect of GBs on carrier mobility by direct four-probe measurements on millimeter-sized graphene bicrystals grown by chemical vapor deposition (CVD). To extract the GB resistivity and carrier mobility from direct four-probe intragrain and intergrain measurements, an electronically equivalent extended 2D GB region is defined based on Ohm's law. Measurements on seven representative GBs find that the maximum resistivities are in the range of several kΩ·μm to more than 100 kΩ·μm. Furthermore, the mobility in these defective regions is reduced to 0.4-5.9‰ of the mobility of single-crystal, pristine graphene. Similarly, the effect of wrinkles on carrier transport can also be derived. The present approach provides a reliable way to directly probe charge-carrier scattering at GBs and can be further applied to evaluate the GB effect of other two-dimensional polycrystalline materials, such as transition-metal dichalcogenides (TMDCs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.