Abstract

The authors report a method to form multilayered graphene directly on top of a dielectric SiO2/Si substrate by the solid-phase crystallization of amorphous carbon (a-C) using Ni as a catalyst and Ti as a carbon diffusion barrier layer; the layer sequence is Ti/Ni/a-C/SiO2/Si. During annealing, carbon diffuses through Ni and forms TiC at the Ti/Ni interface, blocking further carbon diffusion to the Ti layer. During cooling, the remnant carbon in the Ni layer precipitates out at the Ni/SiO2 interface, forming multilayers of graphene. Then, both Ti and Ni are etched away using Radio Corporation of America standard cleaning (SC-I) and FeCl3-based wet etching. The graphene layers formed on top of the dielectric substrate can be utilized without further transfer methods. The best-quality of graphene is formed at 600 °C with the Raman signal D- to G-peak intensity ratio of 0.29. Auger electron spectroscopy depth profiles and sequential etching tests with SC-I and FeCl3-based etchant confirms that the Ti layer is transformed to TiOxCy or TiC layer, which may reduce the carbon diffusion flux through this layer, as expected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call