Abstract

AbstractThis paper reviews a new field of direct femtosecond laser surface nano/microstructuring and its applications. Over the past few years, direct femtosecond laser surface processing has distinguished itself from other conventional laser ablation methods and become one of the best ways to create surface structures at nano‐ and micro‐scales on metals and semiconductors due to its flexibility, simplicity, and controllability in creating various types of nano/microstructures that are suitable for a wide range of applications. Significant advancements were made recently in applying this technique to altering optical properties of metals and semiconductors. As a result, highly absorptive metals and semiconductors were created, dubbed as the “black metals” and “black silicon”. Furthermore, various colors other than black have been created through structural coloring on metals. Direct femtosecond laser processing is also capable of producing novel materials with wetting properties ranging from superhydrophilic to superhydrophobic. In the extreme case, superwicking materials were created that can make liquids run vertically uphill against the gravity over an extended surface area. Though impressive scientific achievements have been made so far, direct femtosecond laser processing is still a young research field and many exciting findings are expected to emerge on its horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.