Abstract

Purpose– The purpose of this paper is to develop new types of direct expansion method of moments (DEMM) by using the n/3th moments for simulating nanoparticle Brownian coagulation in the free molecule regime. The feasibilities of new proposed DEMMs with n/3th moments are investigated to describe the evolution of aerosol size distribution, and some of the models will be applied to further simulation of physical processes.Design/methodology/approach– The accuracy and efficiency of some kinds of methods of moments are mainly compared including the quadrature method of moments (QMOM), Taylor-expansion method of moments (TEMOM), the log-normal preserving method of moments proposed by Lee (LMM) and the derived DEMM in this paper. QMOM with 12 quadrature approximation points is taken as a reference to evaluate other methods.Findings– The newly derived models, namely DEMM(4/3,4) and DEMM(2,6), as well as the previous DEMM(2,4), are considered to be qualified models due to their high accuracy and efficiency. They are confirmed to be valid and alternative models to describe the evolution of aerosol size distribution for particle dynamical process involving the n/3th moments.Originality/value– The n/3th moments, which have clear physical interpretations when n stands for first several integers, are first introduced in the DEMM method for simulating nanoparticle Brownian coagulation in the free molecule regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.