Abstract
ABSTRACTCarbon is a promising p-type dopant in GaAs/AlxGa1−xAs heterojunction bipolar transistors (HBT) because of its low atomic mobility and its potential for achieving very high carrier concentrations. It is generally believed that carbon incorporates substitutionally on the column V sublattice. However, an anomalous behavior at carrier concentrations > 5 × 1019 cm−3 is observed in the electrical properties of carbon doped layers. The strain sustained in these layers may be explained by the presence of interstitial carbon.We used Rutherford Backscattering Spectrometry in channeling geometry utilizing the nuclear reaction 12C (d,p)13C to determine the lattice locations of carbon in GaAs. The data presented unambiguously show, that up to 25% of the carbon atoms occupy interstitial sites. The presence of interstitial carbon is of importance for applications, since interstitial carbon may exhibit an enhanced diffusivity altering nominally abrupt dopant profiles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have